Create Embeddings¶
Generate vector embeddings from text using an embedding model, useful for semantic search, similarity comparisons, and RAG applications.
QType YAML¶
models:
- type: EmbeddingModel
id: titan_embed
provider: aws-bedrock
model_id: amazon.titan-embed-text-v2:0
dimensions: 1024
flows:
- type: Flow
id: main
steps:
- type: InvokeEmbedding
id: embed_text
model: titan_embed
inputs: [text]
outputs: [embedding]
Explanation¶
- EmbeddingModel: Defines an embedding model configuration with provider and dimensions
- dimensions: Size of the embedding vector (must match model output, e.g., 1024 for Titan v2)
- InvokeEmbedding: Step type that generates embeddings from input text
- Embedding: Output type containing the vector array and metadata
Complete Example¶
id: create_embeddings
description: Generate embeddings from text using AWS Bedrock Titan
models:
- type: EmbeddingModel
id: titan_embed
provider: aws-bedrock
model_id: amazon.titan-embed-text-v2:0
dimensions: 1024
flows:
- type: Flow
id: main
variables:
- id: text
type: text
- id: embedding
type: Embedding
inputs:
- text
outputs:
- embedding
steps:
- type: InvokeEmbedding
id: embed_text
model: titan_embed
inputs: [text]
outputs: [embedding]
Run with: